Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(33): 11592-11600, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34383484

RESUMO

Breast cancer 1 gene (BRCA1) DNA mutations impact skeletal muscle functions. Inducible skeletal muscle specific Brca1 homozygote knockout (Brca1KOsmi, KO) mice accumulate mitochondrial DNA (mtDNA) mutations resulting in loss of muscle quality.1 Complementary electrochemical andmass spectrometry analyses were utilized to rapidly assess mtDNA or nuclear DNA (nDNA) extracted directly from mouse skeletal muscles. Oxidative peak currents (Ip) from DNA immobilized layer by layer (LbL) were monitored using square-wave voltammetry (SWV) via Ru(bpy)32+ electrocatalysis. Ip significantly decreased (p < 0.05) for KO mtDNA compared to heterozygous KO (Het) or wild type (WT), indicative of decreases in the guanine content. nDNA Ip significantly increased in KO compared to WT (p < 0.05), suggesting an accumulation of damaged nDNA. Guanine or oxidatively damaged guanine content was monitored via appropriate m/z mass transitions using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). Guanine in both KO mtDNA and nDNA was significantly lower, while oxidatively damaged guanine in KO nDNA was significantly elevated versus WT. These data demonstrate a loss of guanine content consistent with mtDNA mutation accumulation. Oxidative damage in KO nDNA suggests that repair processes associated with Brca1 are impacted. Overall, electrochemical and LC-MS/MS analysis can provide chemical-level answers to biological model phenotypic responses as a rapid and cost-effective analysis alternative to established assays.


Assuntos
Genes BRCA1 , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , DNA Mitocondrial/genética , Camundongos , Músculo Esquelético
2.
Exerc Sport Sci Rev ; 49(4): 267-273, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091499

RESUMO

Breast Cancer gene 1 (BRCA1) is a large, multifunctional protein that regulates a variety of mechanisms in multiple different tissues. Our work established that Brca1 is expressed in skeletal muscle and localizes to the mitochondria and nucleus. Here, we propose BRCA1 expression is critical for the maintenance of force production and mitochondrial respiration in skeletal muscle.


Assuntos
Neoplasias da Mama , Músculo Esquelético , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Feminino , Instabilidade Genômica , Humanos , Mitocôndrias , Músculo Esquelético/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...